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In this paper we generalize results of Miillenheim on recursion relations for
splines developed for the calculation of the solution of the Hermite-Birkholf inter­
polation problem and the continuous approximation of the solution of a nonlinear
two-point boundary value problem. Furthermore we give simpler proofs. " 1991
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1. INTRODUCTION AND RECCRSION RELATIONS

Recently Miillenheim [I] developed some new recursion relations for
splines which are of much use for the treatment of the Hermite-BirkhofT
interpolation problem and a continuous approximation of the solution of
a nonlinear two-point boundary value problem.

The object of this paper is to generalize results of Miillenheim and give
simpler proofs. Let p be a spline of degree m (~3) defined on a uniform
partition with knots Xi = i (- ex; < i < ex;) and p~V) = p(V)(i). Let the
coefficients Ck,l and Ck.O be defined as in [I] by
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where
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ttl I

L ck.!/(m-k)!=O
k 0

/.:. cv~n

(m: odd). (I )

Then for odd m. the recursion relations are as follows:

THEORE\! (M i.illcnheim [I]). For odd m, Ife hare

In --\"

'" (. Ik· \' -- II + 2 Ik' \L (k,I[1;, I ('k.o[1,

k - 0
k C .... CII

(\'= 1,3, ... , m-2). (2)

Before we give our recursion relations, we notice that the essential equa­
tion in (2) is \' = I since pi \ I I for odd \';:: 3 is considered to be a spline of
degree m - (v - I) ( =odd for odd m); the other equations for odd v;:: 3 are
easily obtained from v = I. Therefore, we shall consider the case when v = I.
Let the coefficients dk(m) (k = 0,2, ..., m - I) be defined by

do(m) =0,
k 2

ddm)= L dl.1(m)/(k-i)~,
i-O

I" even

(3)

where dk• 1(m) (k = 0.2, ...• m - I) are parameters satisfying the conditions

In I

L dk.!(m)/(//1-k)~=O.
k-O

/.:.: even

(4 )

With the above introduced constants dk.! (//1) and ddm). we havc

THEOREM 1. For odd //1,

HI 1

'" fd (m)(n 1kl _2plkl+ p 1k J )-2d (m)p1kl}=0. (5)L l k.1 r / + I I /-, I k /

" 0k even

Proof We have only to check if the above Eq. (5) is valid for p(x)= I,
(x - i), ... , (x - i)"', and (x - i)': since p is a linear combination of the terms
on [i - I, i + I].

Letting dk,t(m)=ck.! (k=O,2, ...,m-l) in our relation (5), we have
the essential one in (2). For m = 5, we have a family of one-parameter
relations.
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(Pi 1-1 - 2p, + Pi d + O(p;'~ 1- - 2p;' + P;' - d - P;'

-- (1/120 + 8/6 )(p~~ I - 2p~4) + p~4) I) - (1/12 + H) p~41

=0 (6)

with 0 = d2• 1(5).
Letting 0 = -1/20, we have the following formula that is of much use for

calculation of p~4):

Or letting 0 = 0, we have

P;' = (Pi+ I -2p,+ Pi d- (I/120)(p~~1+ 8p~HI+ p~4)1)' (8)

Next we consider the case when m is even. Let the coefficients Ck.1'

Ck I- 1.0, and Ck.O be defined as in [I] by

(c C c)~ _ 2 k -- 2. 1 + k -- 4. I + + o. I( -- -- -- ...
k.1 4! 6! (k+2)!

_ _ Ck 2. I CO. I

Ck_ 1.0= -Ck I --3-!-- ... - (k+ I)!

(k = 0, 2, ..., m - 2).

Then the results of Miillenheim [I] are as follows:

THEOREM (Miillenheim [I]). For even m, we have

nt- 3
'( (k+,'L Ck.IPi+l
k~O

k: even

where

(\' = I, 3, ..., m - 3 ), (9)

!X,. := C,.. o, II, :=c,. 1.1 +2c,-.0,

k: even

-2i\._ 1.1 - 2c,.. n (\' = 3, 5, ... , m- I ).
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For even m, let the coefficients ddm) (k =0, 2, ... , m) be defined by (3),
where do.,(m)= 1 but we do not require the second condition of (4).
Similarly as in the case when m is odd, note that one essential equation in
(9) is I' = 1. For I' = 1, as in the proof of Theorem 1 we have

THEOREM 2. For even m,

m 2

" fd. (m)(p(kl _2p(kl+ p (kl )-2d.(m)p(kl l.L I k.1 1+ 1 1 1-·1 k 1 J
k~O

k: even

(10)

where p~'~1')_p~m,')=2(p~I:'121-2p~m 21+p~/~121), since pcm 21 is
quadratic on [i - 1, i] and [i, i + 1].

Letting dk.1 (m) = ck.1 (k = 0, 2, ... , m - 2), then we easily have (i) and (ii)
except (iii):

(i)

(ii)

(iii)

(k = 0,2, ... , m - 4)

dm __ 2.1(m)-2dm(m)=cm_ 2.1 (or =fJm ) -21m I)

2{2dm(m)-dm_2(m)-dm 2.I(m)} =i'm--I +2Cl: m ._ , ·

(11 )

Here we shall prove only (iii). From (ii) and 1 m 1 = (\n 1.0' Eq. (iii) is
equivalent to

m 4 {2 m
k \. c }d () - L k. I + k.O

m 2 m - k~O (m-k-2)! (m-k-2)!
k even

+ "i4
{2

m
k ·Jdk.1(m) dk.dm)+dk(m)}

k~O (m-k-2)! (m-k-2)!
k.: e ....en

or

m~4 dk(m)
dm 2(m)+ L

k~O (m-k-2)!
J... even

(12)

This identity can easily be obtained by comparing the coefficients of
dk • 1(m) (k = 0, 2, ... , m - 4) on both sides of (12) where the following
relation is of use:

(k: even).
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Hence, by means of ( II ) our relation (l0) becomes

m 4

0= L (Ck.1p~:11+2ck.Op~kl+Ck.1p~kll)+{dm 2.I(m)-2dm(m)}p~'~'121
k-O

k even

+2{2dm(m)-dm 2(m)-dm 2.I(m)}p~m-21

+ {dm 2.I(m) - 2dm(m)} p~m 1
21

=I("')+Cm 2.,P~:12J+(""m 1+ 2:>:m I)p~m 2)

+ ([3 2 ) 1m 21m-l- am 1 Pi I

_" ( )+ (~ plm 21 + '"- L ... (In - 2. 1 i + 1 1m

where am _ 1 = (m-I.o, Thus we obtain the essential equation in (9) as a
special case of our recursion relation (10).

For m = 4, we have a family of one-parameter relations,

(Pi+ 1 - 2p, + Pi tl + O(p;'+ 1 - 2p;' + p;' tl- p;'

- (1/24 + 0/2)(p~1,) I - p~3' I) = 0, (14)

with 0=d2• 1(4).
Letting () = -1/12, we have the well-known short term recurrence

relation for a quartic spline,

(Pi+I-2P,+P, 1)-(ljI2)(p;'tl+lOp;'+p;' tl=O. (15)

For m = 6, we have a family of two-parameter relations,

(P,. 1- 2p, + Pi- I) + O(p;'+ 1 - 2p;' + p;' I) - p;'

+ "/(p)4,11 _ 2p~4' + pj~ll) _ (1/12 + 8) p~41

- (1/720 + 0/24 + 1'/2)(p:~1- pfld = 0 (16)

with 0=d2• 1(6) and ,=d4 • 1(6).
Letting (O,}') = (-1/30,0) or (0, -1/360), we have

p~4)=20(Pi+I-2PI+p, ))-(2/3)(p;',,+28p;'+p;' ,) (17)

(for this formula, see [2, p. 157]) or

P;'=(Pil-l-2p,+Pi 1)-(1/360)(p~~1+28p~4)+p~411)' (18)
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In Section 2, we shall give other recursion relations which are of much
use for calculation of P; as a linear combination of Pi and P;' specified in
Hermite BirkhofT interpolation problem.

2. OTHER REClJRSIO"l RELATIO"lS

(19)
k
L ci (m)/(k+l-i)!=8/k! (k=2, ...,m-I).

1=0
i: even

Let 8 and I' be any real constants. For odd m, let the coefficients ck(m)
(k = 0,2, ... , m - I) be defined by

cn(m)=t1+y/2

As in the proof of Theorem I, we have Theorem 3. For odd m, the
following relation holds:

m -I

",()(lk)_(k))_(J' "0'L (k m Pi+1 P,-I - Pi-I +YPI+ P, I'

k~O

k even

(20)

For m=5, letting (0,"/)=(7, 16) or (0, I) gives

(7p;+1+16p;+7p; d=15(Pi+I-Pi d+(p;'+I-P;' d (21)

or

P; = (1/2)(Pi+ 1 - Pi- d- (1/12)(p;'+ 1- P;' d+ (7/720)(p~~I-P:4
!1)'

(22)

By making use of (21) or (7) - (22), we can easily construct the solution
of the Hermite-BirkholT interpolation problem, where given real data YP
M i , a spline P of degree m ( = 5) with simple knots Xi = i is looked for such
that

PI = YP

For even m, let the coefficients ck(m) (k = 0,2, ..., m - 4) be defined by
(19), where k runs from 2 to m-4 (step 2). Next let cm_2(m) and cm(m)
be determined by

m-4

cm2(m)+cm(m)=8/(m-2)!- L c,(m)/(m-I-i}!
i= 0

i: even

m 4

Cm 2(m)/2 + cm(m) = O/(m - I)! - L ci(m)/(m - i)!.
,~ 0

1: even
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(23)

Then, similarly as in the proof of Theorem I we have Theorem 4. For even
In, the following relation holds:

'" . ( )( Ik I Ik I ) + . ( )( 1m 111m II) _ ll' + .. ' ll'L.. (kin P,II-P,-I (mm Pill +Pi 1 -UP"l ,p,+Up, I'
k-O

/.:.: c\·cn

For m = 6, letting (0, i') = (I, 2) in (23) gives

(p;. I + 2p; + P; II

=2(p,+ I - Pi 1) + (1/6 )(p;' I 1 - p;'_ Il- (1/360)(p~~\ - p~411)' (24)

Here, an alternating sum obtained by writing down Eg. (24), subtracting
(24) with i replaced with i + 1, adding (24) with i replaced with i +2, and
so on is equal to the short term recursion relation at two adjacent knots
x = i and i + I:

Recursion relations (17) and (25) would be of use for calculation of P;, i.e.,
the continuous solution of the Hermite-Birkhoff interpolation problem.
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